By Caterina Consani, Matilde Marcolli

**Read or Download Noncommutative Geometry and Number Theory: Where Arithmetic meets Geometry and Physics PDF**

**Similar geometry and topology books**

Extensively considered as a vintage of recent arithmetic, this multiplied model of Felix Klein's celebrated 1894 lectures makes use of modern recommendations to ascertain 3 well-known difficulties of antiquity: doubling the quantity of a dice, trisecting an perspective, and squaring a circle. brand new scholars will locate this quantity of specific curiosity in its solutions to such questions as: below what conditions is a geometrical development attainable?

- Geometry and Analysis: Papers Dedicated to the Memory of V.K. Patodi
- On the topological classification of certain singular hypersurfaces in 4-dimensional projective space
- A treatise on the analytical geometry of the point, line, circle, and conical sections
- Complex Numbers in Geometry
- Riemannian Topology and Geometric Structures on Manifolds
- Elements of general topology (1969)(en)(214s)

**Additional info for Noncommutative Geometry and Number Theory: Where Arithmetic meets Geometry and Physics**

**Example text**

R. uk Hilbert modular forms and the Ramanujan conjecture Don Blasius Abstract. This paper completes the proof, at all ﬁnite places, of the Ramanujan Conjecture for motivic holomorphic Hilbert modular forms which belong to the discrete series at the inﬁnite places. In addition, the WeightMonodromy Conjecture of Deligne is proven for the Shimura varieties attached to GL(2) and its inner forms, and the conjecture of Langlands, often today called the local-global compatibility , is established at all places for these varieties.

1). Then Fλ is a connected Lie group. We will write Tλ (C) for the standard maximal torus of Fλ . The Weyl group is then W (λ) = Sn1 × · · · × Snp . According to Bourbaki [Bo, Chapter 8], the map Ch, sending each (virtual) representation to its (virtual) character, creates an isomorphism: Ch : R(Fλ ) ∼ = Z[X ∗ (Tλ (C)]W (λ) . Note that a complex linear combination of rational characters of Tλ (C) is precisely a regular function on Tλ (C). For each two-sided cell c of W the Z-submodule Jc of J, spanned by all tw , w ∈ c, is a two-sided ideal of J.

Symp. Pure Math. 3 3 (1979), part 1, 111–155. [CDN] N. Chifan, S. Dascalescu and C. Nastasescu, Wide Morita contexts, relative injectivity and equivalence results, J. Algebra 2 8 4 (2005), 705–736. [C] J. Cuntz, Morita invariance in cyclic homology for nonunital algebras, K-Theory 1 5 (1998), 301 - 305. [CST] J. Cuntz, G. Skandalis, B. Tsygan, Cyclic homology in noncommutative geometry, EMS 1 2 1 , 2004. [EH] D. Eisenbud, J. Harris, The geometry of schemes, Springer Graduate Text 1 9 7 , 2001. [G] M.