Constructive nonsmooth analysis by V. F. Demianov, Aleksandr Moiseevich Rubinov

By V. F. Demianov, Aleksandr Moiseevich Rubinov

Show description

Read Online or Download Constructive nonsmooth analysis PDF

Similar mathematics books

Extra info for Constructive nonsmooth analysis

Sample text

Tn+1 ), y = 0 is a solution of L. The induction hypothesis implies that the algebraic closure k(t), with t = t1 , contains solutions of the Riccati equation of L. It t is algebraic over k, then we are done. 43, the Picard-Vessiot field of L over k(t) which is denoted by Kk(t) or K(t). Further Kk(t) denotes the Picard-Vessiot field of L over k(t). Let V ⊂ K denote the solution space of L (in K and also in Kk(t)). Let a y ∈ V, y = 0 be given such that yy is algebraic over k(t). For any σ ∈ Gal(K/k) the element σ(y) has the same property.

2) The Lie algebra of G coincides with the Lie algebra of the derivations of L/k that commute with the derivation on L. (3) The field LG of G-invariant elements of L is equal to k. Proof. An intuitive proof of (1) and (2). 1 ]/q, where q is a maximal difL is the field of fractions of R := k[Xi,j , det ferential ideal. 26 one can identify G with the group of matrices 1 ], given M ∈ GLn (C) such that the automorphism σM of R0 := k[Xi,j , det by (σXi,j ) = (Xi,j )M , has the property σM (q) ⊂ q. One has to verify that the property σM (q) ⊂ q defines a Zariski closed subset of GLn (C).

Let (Xi,j ) denote an n × n-matrix of indeterminates and let “det” 1 ] denote the determinant of (Xi,j ). t. the ele1 ] with the derivation, ment “det”. Consider the differential ring R0 = k[Xi,j , det extending the one of k, given by (Xi,j ) = A(Xi,j ). 1 shows the existence and unicity of such a derivation. Let I ⊂ R0 be a maximal differential ideal. Then R = R0 /I is easily seen to be a Picard-Vessiot ring for the equation. 2. Let R1 , R2 denote two Picard-Vessiot rings for the equation. Let B1 , B2 denote the two fundamental matrices.

Download PDF sample

Rated 4.32 of 5 – based on 41 votes